Positive and Negative Coupling of the Metabotropic Glutamate Receptors to a G Protein–activated K+ Channel, GIRK, in Xenopus Oocytes
Open Access
- 1 April 1997
- journal article
- Published by Rockefeller University Press in The Journal of general physiology
- Vol. 109 (4) , 477-490
- https://doi.org/10.1085/jgp.109.4.477
Abstract
Metabotropic glutamate receptors (mGluRs) control intracellular signaling cascades through activation of G proteins. The inwardly rectifying K+ channel, GIRK, is activated by the βγ subunits of Gi proteins and is widely expressed in the brain. We investigated whether an interaction between mGluRs and GIRK is possible, using Xenopus oocytes expressing mGluRs and a cardiac/brain subunit of GIRK, GIRK1, with or without another brain subunit, GIRK2. mGluRs known to inhibit adenylyl cyclase (types 2, 3, 4, 6, and 7) activated the GIRK channel. The strongest response was observed with mGluR2; it was inhibited by pertussis toxin (PTX). This is consistent with the activation of GIRK by Gi/Go-coupled receptors. In contrast, mGluR1a and mGluR5 receptors known to activate phospholipase C, presumably via G proteins of the Gq class, inhibited the channel's activity. The inhibition was preceded by an initial weak activation, which was more prominent at higher levels of mGluR1a expression. The inhibition of GIRK activity by mGluR1a was suppressed by a broad-specificity protein kinase inhibitor, staurosporine, and by a specific protein kinase C (PKC) inhibitor, bis-indolylmaleimide, but not by PTX, Ca2+ chelation, or calphostin C. Thus, mGluR1a inhibits the GIRK channel primarily via a pathway involving activation of a PTX-insensitive G protein and, eventually, of a subtype of PKC, possibly PKC-μ. In contrast, the initial activation of GIRK1 caused by mGluR1a was suppressed by PTX but not by the protein kinase inhibitors. Thus, this activation probably results from a promiscuous coupling of mGluR1a to a Gi/Go protein. The observed modulations may be involved in the mGluRs' effects on neuronal excitability in the brain. Inhibition of GIRK by phospholipase C–activating mGluRs bears upon the problem of specificity of G protein (GIRK interaction) helping to explain why receptors coupled to Gq are inefficient in activating GIRK.Keywords
This publication has 88 references indexed in Scilit:
- Inhibition of an inwardly rectifying K+ channel by G-protein α-subunitsNature, 1996
- The G Protein βγ Subunit Transduces the Muscarinic Receptor Signal for Ca2+ Release in Xenopus OocytesPublished by Elsevier ,1995
- Gβγ Directly Binds to the Carboxyl Terminus of the G Protein-Gated Muscarinic K+ Channel, GIRK1Biochemical and Biophysical Research Communications, 1995
- Heterologous Multimeric Assembly Is Essential for K+ Channel Activity of Neuronal and Cardiac G-Protein-Activated Inward RectifiersBiochemical and Biophysical Research Communications, 1995
- Cloning provides evidence for a family of inward rectifier and G‐protein coupled K+ channels in the brainFEBS Letters, 1994
- Activation of the cloned muscarinic potassium channel by G protein βγ subunitsNature, 1994
- l-Glutamate conditionally modulates the K+ current of miller glial cellsNeuron, 1993
- A G Protein γ Subunit Shares Homology with ras ProteinsScience, 1989
- The Use ofXenopusOocytes for the Study of Ion ChannelCritical Reviews in Biochemistry, 1987
- Uncoupling of cardiac muscarinic and β-adrenergic receptors from ion channels by a guanine nucleotide analogueNature, 1985