Sensory Prediction Errors Drive Cerebellum-Dependent Adaptation of Reaching
Top Cited Papers
Open Access
- 1 July 2007
- journal article
- Published by American Physiological Society in Journal of Neurophysiology
- Vol. 98 (1) , 54-62
- https://doi.org/10.1152/jn.00266.2007
Abstract
The cerebellum is an essential part of the neural network involved in adapting goal-directed arm movements. This adaptation might rely on two distinct signals: a sensory prediction error or a motor correction. Sensory prediction errors occur when an initial motor command is generated but the predicted sensory consequences do not match the observed values. In some tasks, these sensory errors are monitored and result in on-line corrective motor output as the movement progresses. Here we asked whether cerebellum-dependent adaptation of reaching relies on sensory or on-line motor corrections. Healthy controls and people with hereditary cerebellar ataxia reached during a visuomotor perturbation in two conditions: “shooting” movements without on-line corrections and “pointing” movements that allowed for on-line corrections. Sensory (i.e., visual) errors were available in both conditions. Results showed that the addition of motor corrections did not influence adaptation in control subjects, suggesting that only sensory errors were needed for learning. Cerebellar subjects were comparably impaired in both adaptation conditions relative to controls, despite abnormal and inconsistent on-line motor correction. Specifically, poor on-line motor corrections were unrelated to cerebellar subjects' adaptation deficit (i.e., adaptation did not worsen), further suggesting that only sensory prediction errors influence this process. Therefore adaptation to visuomotor perturbations depends on the cerebellum and is driven by the mismatch between predicted and actual sensory outcome of motor commands.Keywords
This publication has 41 references indexed in Scilit:
- Force field effects on cerebellar Purkinje cell discharge with implications for internal modelsNature Neuroscience, 2006
- Interacting Adaptive Processes with Different Timescales Underlie Short-Term Motor LearningPLoS Biology, 2006
- An Implicit Plan Overrides an Explicit Strategy during Visuomotor AdaptationJournal of Neuroscience, 2006
- Effects of Human Cerebellar Thalamus Disruption on Adaptive Control of ReachingCerebral Cortex, 2005
- Interlimb Coordination During Locomotion: What Can be Adapted and Stored?Journal of Neurophysiology, 2005
- Independent on‐line control of the two hands during bimanual reachingEuropean Journal of Neuroscience, 2004
- Hereditary Cerebellar Ataxia Progressively Impairs Force Adaptation During Goal-Directed Arm MovementsJournal of Neurophysiology, 2004
- Forward Models for Physiological Motor ControlNeural Networks, 1996
- Is the Cerebellum a Smith Predictor?Journal of Motor Behavior, 1993
- Neural design of the cerebellar motor control systemBrain Research, 1972