Functional integrity of mitochondrial genomes in human platelets and autopsied brain tissues from elderly patients with Alzheimer’s disease
- 2 March 1999
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 96 (5) , 2099-2103
- https://doi.org/10.1073/pnas.96.5.2099
Abstract
To determine whether pathogenic mutations in mtDNA are involved in phenotypic expression of Alzheimer’s disease (AD), the transfer of mtDNA from elderly patients with AD into mtDNA-less (ρ0) HeLa cells was carried out by fusion of platelets or synaptosomal fractions of autopsied brain tissues with ρ0 HeLa cells. The results showed that mtDNA in postmortem brain tissue survives for a long time without degradation and could be rescued in ρ0 HeLa cells. Next, the cybrid clones repopulated with exogenously imported mtDNA from patients with AD were used for examination of respiratory enzyme activity and transfer of mtDNA with the pathogenic mutations that induce mitochondrial dysfunction. The presence of the mutated mtDNA was restricted to brain tissues and their cybrid clones that formed with synaptosomes as mtDNA donors, whereas no cybrid clones that isolated with platelets as mtDNA donors had detectable mutated mtDNA. However, biochemical analyses showed that all cybrid clones with mtDNA imported from platelets or brain tissues of patients with AD restored mitochondrial respiration activity to almost the same levels as those of cybrid clones with mtDNA from age-matched normal controls, suggesting functional integrity of mtDNA in both platelets and brain tissues of elderly patients with AD. These observations warrant the reassessment of the conventional concept that the accumulation of pathogenic mutations in mtDNA throughout the aging process is responsible for the decrease of mitochondrial respiration capacity with age and with the development of age-associated neurodegenerative diseases.Keywords
This publication has 29 references indexed in Scilit:
- Isolation and Characterization of Mitochondrial DNA-less Lines from Various Mammalian Cell Lines by Application of an Anticancer Drug, DitercaliniumBiochemical and Biophysical Research Communications, 1997
- DiscussionTrends in Neurosciences, 1997
- Mitochondrial DNA Is Required for Regulation of Glucose-stimulated Insulin Secretion in a Mouse Pancreatic Beta Cell Line, MIN6Journal of Biological Chemistry, 1996
- MOLECULAR GENETIC ASPECTS OF HUMAN MITOCHONDRIAL DISORDERSAnnual Review of Genetics, 1995
- Mitochondrial decay in agingBiochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1995
- Human mitochondria and mitochondrial genome function as a single dynamic cellular unit.The Journal of cell biology, 1994
- Mitochondrial DNA deletions in human brain: regional variability and increase with advanced ageNature Genetics, 1992
- Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brainNature Genetics, 1992
- MITOCHONDRIAL DNA MUTATIONS AS AN IMPORTANT CONTRIBUTOR TO AGEING AND DEGENERATIVE DISEASESThe Lancet, 1989
- Cytochrome C oxidase deficiency in two siblings with leigh encephalomyelopathyBrain & Development, 1984