Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans
- 1 March 2005
- journal article
- clinical trial
- Published by American Physiological Society in Journal of Applied Physiology
- Vol. 98 (3) , 804-809
- https://doi.org/10.1152/japplphysiol.01057.2004
Abstract
The present study investigated whether muscular monocarboxylate transporter (MCT) 1 and 4 contents are related to the blood lactate removal after supramaximal exercise, fatigue indexes measured during different supramaximal exercises, and muscle oxidative parameters in 15 humans with different training status. Lactate recovery curves were obtained after a 1-min all-out exercise. A biexponential time function was then used to determine the velocity constant of the slow phase (γ2), which denoted the blood lactate removal ability. Fatigue indexes were calculated during 1-min all-out (FIAO) and repeated 10-s (FISprint) cycling sprints. Biopsies were taken from the vastus lateralis muscle. MCT1 and MCT4 contents were quantified by Western blots, and maximal muscle oxidative capacity ( Vmax) was evaluated with pyruvate + malate and glutamate + malate as substrates. The results showed that the blood lactate removal ability (i.e., γ2) after a 1-min all-out test was significantly related to MCT1 content ( r = 0.70, P < 0.01) but not to MCT4 ( r = 0.50, P > 0.05). However, greater MCT1 and MCT4 contents were negatively related with a reduction of blood lactate concentration at the end of 1-min all-out exercise ( r = −0.56, and r = −0.61, P < 0.05, respectively). Among skeletal muscle oxidative indexes, we only found a relationship between MCT1 and glutamate + malate Vmax ( r = 0.63, P < 0.05). Furthermore, MCT1 content, but not MCT4, was inversely related to FIAO ( r = −0.54, P < 0.05) and FISprint ( r = −0.58, P < 0.05). We concluded that skeletal muscle MCT1 expression was associated with the velocity constant of net blood lactate removal after a 1-min all-out test and with the fatigue indexes. It is proposed that MCT1 expression may be important for blood lactate removal after supramaximal exercise based on the existence of lactate shuttles and, in turn, in favor of a better tolerance to muscle fatigue.Keywords
This publication has 36 references indexed in Scilit:
- Relationships between maximal muscle oxidative capacity and blood lactate removal after supramaximal exercise and fatigue indexes in humansJournal of Applied Physiology, 2004
- Monocarboxylate transporters in subsarcolemmal and intermyofibrillar mitochondriaBiochemical and Biophysical Research Communications, 2004
- MCT1 confirmed in rat striated muscle mitochondriaJournal of Applied Physiology, 2004
- Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscleAmerican Journal of Physiology-Endocrinology and Metabolism, 2004
- Lactate Transport in Rat Sarcolemmal Vesicles After a Single Bout of Submaximal ExerciseInternational Journal of Sports Medicine, 2000
- Lactic Acid Efflux from White Skeletal Muscle Is Catalyzed by the Monocarboxylate Transporter Isoform MCT3Journal of Biological Chemistry, 1998
- Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: Implications for the Cori cycleCell, 1994
- Peak blood ammonia and lactate after submaximal, maximal and supramaximal exercise in sprinters and long-distance runnersEuropean Journal of Applied Physiology, 1990
- Lactate Uptake by Skeletal MuscleExercise and Sport Sciences Reviews, 1989
- Mitochondrial respiratory parameters in cardiac tissue: A novel method of assessment by using saponin-skinned fibersBiochimica et Biophysica Acta (BBA) - Bioenergetics, 1987