Abstract
The Dirac chord method is applied to the calculation of the escape probability of heavy charged particles from a uniform isotropic source of arbitrary convex geometry. This leads to the distribution of path lengths traveled by particles before escaping from the source. The path-length distribution, which is a function only of the Dirac chord distribution, may be used to average nuclear characteristics over the source geometry. As an illustration, the standard formula for the neutron-escape probability is reproduced. Expressions are then derived for the spectrum and energy self absorption of heavy-charged-particle sources. Specific results for spherical, slab, and cylindrical sources are obtained with the assumption that the range is proportional to an arbitrary power of the particle energy.

This publication has 0 references indexed in Scilit: