Inhibitory control of acquired motor programmes in the human brain
Top Cited Papers
Open Access
- 1 February 2002
- journal article
- research article
- Published by Oxford University Press (OUP) in Brain
- Vol. 125 (2) , 404-420
- https://doi.org/10.1093/brain/awf030
Abstract
An important basis of skilled human behaviour is the appropriate retrieval of acquired and memorized motor programmes (‘motor memory traces’). Appropriate retrieval is warranted if motor programmes are only activated if necessary and are, probably more often, inhibited if required by the context of a given situation. It is unknown how this type of inhibition is accomplished in the brain. We studied context‐dependent modulation of motor memory traces in 18 volunteers and six patients with focal dystonia. Cortical function was assessed with transcranial magnetic stimulation over the primary motor cortex (M1) and with task‐related analysis of oscillatory EEG activity. An activation (ACT) and inhibition (INH) condition were compared. In both, visual cues were presented at 1/s. In ACT, subjects had to respond to these cues with individual finger movements as learned in a preceding training session. In INH, subjects had to observe the cues without retrieval of motor responses. During INH, inhibitory control of the motor memory trace was confirmed by significant amplitude reduction of motor evoked potentials (MEPs) compared with baseline. This was accompanied by a significant increase of 11–13 Hz oscillatory activity over the sensorimotor areas during INH. During active retrieval of the motor memory traces, the reverse was true (increased MEP amplitudes, decreased oscillatory 11–13 Hz activity). In a small sample of dystonic patients (n = 6), the increase of 11–13 Hz oscillatory activity during INH was consistently absent. The present data demonstrate for the first time cortical correlates of appropriate, context‐dependent inhibition of motor memory traces. We propose that focal increases of oscillatory activity are instrumental for inhibitory control at the cortical level. This concept is supported by the preliminary observations in dystonic patients who are known to have deficits of inhibitory motor control and in whom these context‐dependent focal increases of oscillatory activity were absent.Keywords
This publication has 75 references indexed in Scilit:
- Abnormalities of sensorimotor integration in focal dystoniaBrain, 2001
- Functional coupling of human cortical sensorimotor areas during bimanual skill acquisitionBrain, 1999
- Intracortical Inhibition and Facilitation in Different Representations of the Human Motor CortexJournal of Neurophysiology, 1998
- Studies of Neuroplasticity With Transcranial Magnetic StimulationJournal Of Clinical Neurophysiology, 1998
- The pathophysiology of primary dystoniaBrain, 1998
- Rapid Plasticity of Human Cortical Movement Representation Induced by PracticeJournal of Neurophysiology, 1998
- Functional relevance of cross-modal plasticity in blind humansNature, 1997
- Alpha oscillations in brain functioning: an integrative theoryInternational Journal of Psychophysiology, 1997
- Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD.Psychological Bulletin, 1997
- Rapid reversible modulation of human motor outputs after transient deafferentation of the forearmNeurology, 1992