Evaluation of head injury criteria using a finite element model validated against experiments on localized brain motion, intracerebral acceleration, and intracranial pressure
- 1 January 2006
- journal article
- Published by Taylor & Francis in International Journal of Crashworthiness
- Vol. 11 (1) , 65-79
- https://doi.org/10.1533/ijcr.2005.0384
Abstract
The objective of the present study was to analyze the effect of different load directions and durations following impact using a finite element (FE) model of the human head. A detailed FE model of the human head was developed and validated against available cadaver experiment data for three impact directions (frontal, occipital, and lateral). Loads corresponding to the same impact power were imposed in different directions. Furthermore, the head injury criterion (HIC), the recently proposed head impact power (HIP) criterion, as well as peak angular acceleration, and change in angular and translational velocity were evaluated with respect to the strain in the central nervous system (CNS) tissue. A significant correlation was found between experiments and simulations with regard to intracranial pressure data for a short-duration impulse and intracerebral acceleration characteristics for a long-duration impulse with a high-angular component. However, a poor correlation with the simulations was found...Keywords
This publication has 20 references indexed in Scilit:
- A proposed tolerance criterion for diffuse axonal injury in manPublished by Elsevier ,2004
- A Proposed Injury Threshold for Mild Traumatic Brain InjuryJournal of Biomechanical Engineering, 2004
- The epidemiology of head injuries in Sweden from 1987 to 2000Injury Control and Safety Promotion, 2003
- The creation of three-dimensional finite element models for simulating head impact biomechanicsInternational Journal of Crashworthiness, 2003
- Comparison of Brain Responses Between Frontal and Lateral Impacts by Finite Element ModelingJournal of Neurotrauma, 2001
- Tissue-Level Thresholds for Axonal Damage in an Experimental Model of Central Nervous System White Matter InjuryJournal of Biomechanical Engineering, 2000
- Finite Element Model Study of Head Impact Based on Hybrid III Head Acceleration: The Effects of Rotational and Translational AccelerationJournal of Biomechanical Engineering, 1995
- Head Injury in Man and Experimental Animals: Clinical AspectsPublished by Springer Nature ,1983
- Biomechanics of Acute Subdural HematomaPublished by Wolters Kluwer Health ,1982
- MECHANICS OF HEAD INJURIESThe Lancet, 1943