Synthetic Applications of Lithiated N-Boc Allylic Amines as Asymmetric Homoenolate Equivalents

Abstract
Lithiation of N-(Boc)-N-(p-methoxyphenyl) allylic amines in the presence of (-)-sparteine provides asymmetric homoenolate equivalents which react with electrophiles to provide highly enantioenriched enecarbamates. Acidic hydrolysis of the enecarbamates can provide the corresponding beta-substituted aldehydes. A synthetic sequence that involves a stereocontrolled intramolecular nitrone-olefin dipolar cycloaddition has been developed for the preparation of enantioenriched 2-formyl-4-phenyl-1-aminocyclopentanes from one beta-allyl-substituted aldehyde. Further manipulations allow access to an enantioenriched beta-lactam. In another synthetic sequence, transmetalation of the lithiated intermediates and reactions with aldehyde electrophiles can be controlled to afford highly enantioenriched anti homoaldol products. Use of an anti aldehyde homoaldol product as the chiral electrophile in an iterative reaction provides a double homoaldol product containing four stereogenic centers with high diastereoselectivity and enantioselectivity. Reaction pathways are proposed to account for the observed products.

This publication has 19 references indexed in Scilit: