Femtosecond Imaging of Surface Plasmon Dynamics in a Nanostructured Silver Film

Abstract
Light interacting with nanostructured metals excites the collective charge density fluctuations known as surface plasmons (SP). Through excitation of the localized SP eigenmodes incident light is trapped on the nanometer spatial and femtosecond temporal scales and its field is enhanced. Here we demonstrate the imaging and quantum control of SP dynamics in a nanostructured silver film. By inducing and imaging the nonlinear two-photon photoemission from the sample with a pair of identical 10-fs laser pulses while scanning the pulse delay, we record a movie of SP fields at a rate of 330-attoseconds/frame.