Instabilities of the Ginzburg-Landau equation: periodic solutions

Abstract
The evolution of spatially periodic unstable solutions to the Ginzburg-Landau equation is considered. These solutions are shown to remain pointwise bounded (Lagrange stable). The first step in the route to chaos is limit cycle behavior. This is treated by perturbation theory and shown to result in a factorable form. Agreement between the perturbation result and an exact numerical integration is shown to be excellent.

This publication has 20 references indexed in Scilit: