Abstract
In the sea slug Aplysia, buccal synapses of cerebral-buccal interneurons (CBIs) CBI-2 and CBI-12 exhibit short-term synaptic enhancement (STE), including frequency-dependant facilitation and augmentation/post-tetanic potentiation (AUG/PTP). The STE that results from driving CBI-2 or CBI-12 is associated with significantly decreased latency to burst onset in buccal premotor neurons and motor neurons, increased cycle frequency of ingestion buccal motor programs (iBMPs) and increased intraburst firing frequency of buccal neurons during iBMPs. Tests of paired-pulse facilitation during AUG/PTP suggest that the locus for this plasticity is presynaptic. The AUG/PTP is not elicited by heterosynaptic pathways, indicating that its origin is homosynaptic. At low CBI-2 and CBI-12 firing frequencies, STE is likely to contribute to iBMP initiation, while at higher firing frequencies, STE is correlated with increased cycle frequency of iBMPs. Thus, STE is an important component of the mechanisms whereby cerebral neurons regulate cyclic feeding programs and likely contributes to observed variations in behavioral responses, including feeding arousal.

This publication has 0 references indexed in Scilit: