Linear theory of rotating stratified fluid motions

Abstract
A linear theory for steady motions in a rotating stratified fluid is presented, valid under the assumption that ε < E, where ε and E are respectively the Rossby and Ekman numbers. The fact that the stable stratification inhibits vertical motions has important consequences and many features of the dynamics of homogeneous rotating fluids are no longer present. For instance, in addition to the absence of the Taylor-Proudman constraint, it is found that Ekman layer suction no longer controls the interior dynamics. In fact, the Ekman layers themselves are frequently absent. Furthermore, the vertical Stewartson boundary layers are replaced by a new kind of boundary layer whose structure is characteristic of rotating stratified fluids. The interior dynamics are found to be controlled by dissipative processes.

This publication has 6 references indexed in Scilit: