Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy.
- 1 January 1994
- journal article
- abstracts
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 74 (1) , 163-171
- https://doi.org/10.1161/01.res.74.1.163
Abstract
We report the first topographical data of the surface of living endothelial cells at sub-light-microscopic resolution, measurements essential for a detailed understanding of force distribution in the endothelium subjected to flow. Atomic force microscopy was used to observe the surface topography of living endothelial cells in confluent monolayers maintained in static culture or subjected to unidirectional shear stress in laminar flow (12 dyne/cm2 for 24 hours). The surface of polygonal unsheared cells was smooth, with mean excursion of surface undulation between peak height (over the nucleus) and minima (at intercellular junctions) of 3.4 +/- 0.7 microns (mean +/- SD); the mean height to length ratio was 0.11 +/- 0.02. In cells that were aligned in the direction of flow after a 24-hour exposure to laminar shear stress, height differentials were significantly reduced (mean, 1.8 +/- 0.5 micron), and the mean height to length ratio was 0.045 +/- 0.009. Calculation of maximum shear stress and maximum gradient of shear stress (delta tau/delta x, where tau is shear stress at the cell surface) at constant flow velocity revealed substantial streamling of aligned cells that reduced delta tau/delta x by more than 50% at a nominal shear stress of 10 dyne/cm2. Aligned cells exhibited ridges extending in the direction of flow that represented imprints of submembranous F-actin stress-fiber bundles mechanically coupled to the cell membrane. The surface ridges, approximately 50 nm in height and 200 to 1000 nm in width, were particularly prominent in the periphery of the aligned cells.(ABSTRACT TRUNCATED AT 250 WORDS)Keywords
This publication has 34 references indexed in Scilit:
- True Atomic Resolution by Atomic Force Microscopy Through Repulsive and Attractive ForcesScience, 1993
- Endothelial cell adhesion in real time. Measurements in vitro by tandem scanning confocal image analysis.Journal of Clinical Investigation, 1993
- Elementary Mechanics of the Endothelium of Blood VesselsJournal of Biomechanical Engineering, 1993
- New Approach for Atomic Force Microscopy of Membrane ProteinsJournal of Molecular Biology, 1993
- The Distribution of Fluid Forces on Model Arterial Endothelium Using Computational Fluid DynamicsJournal of Biomechanical Engineering, 1992
- Crucial role of endothelium in the vasodilator response to increased flow in vivo.Hypertension, 1986
- The Elongation and Orientation of Cultured Endothelial Cells in Response to Shear StressJournal of Biomechanical Engineering, 1985
- Stokes flow in arbitrary two-dimensional domains: shear flow over ridges and cavitiesJournal of Fluid Mechanics, 1985
- Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells.Journal of Clinical Investigation, 1984
- The Dynamic Response of Vascular Endothelial Cells to Fluid Shear StressJournal of Biomechanical Engineering, 1981