Intracellular chloride activity in mammalian ventricular muscle

Abstract
The intracellular chloride activity (formula, see text) of quiescent rabbit right papillary muscle was measured with ion-selective microelectrodes (ISE) made with Corning 477315 liquid ion-exchange resin. The (formula, see text) was 9.8 +/- 2.4 (SD) mM, a value significantly greater than the 6.1 +/- 0.6 mM expected from passive distribution. The chloride equilibrium potential (ECl) was -64.4 +/- 6.6 mV, while membrane potential was -75.9 +/- 2.2 mV and significantly negative to ECl. These values are corrected for a nonchloride signal detected by the ISE. An apparent (formula, see text) of 4.8 +/- 0.6 mM was measured after exposure to Cl-free media for 1 h. Since isotopic chloride was totally washed out by this time, the apparent (formula, see text) in Cl-free media was interpreted as interference and subtracted from the (formula, see text) measured in other media. The conclusion that chloride is not passively distributed is supported by the observation that the (formula, see text) increase in high potassium media was smaller than predicted. In contrast to findings in papillary muscle, (formula, see text) of frog sartorius muscle was consistent with passive distribution, if it is assumed that interference was less than 0.5 mM.