Cluster Validity with Fuzzy Sets

Abstract
Given a finite, unlabelled set of real vectors X, one often presumes the existence of (c) subsets (clusters) in X, the members of which somehow bear more similarity to each other than to members of adjoining clusters. In this paper, we use membership function matrices associated with fuzzy c-partitions of X, together with their values in the Euclidean (matrix) norm, to formulate an a posteriori method for evaluating algorithmically suggested clusterings of X. Several numerical examples are offered in support of the proposed technique.

This publication has 0 references indexed in Scilit: