The tRNA Required for in Vitro δ-Aminolevulinic Acid Formation from Glutamate in Synechocystis Extracts

Abstract
RNA is an essential component for the enzymic conversion of glutamate to δ-aminolevulinic acid (ALA), the universal heme and chlorophyll precursor, as carried out in plants, algae, and some bacteria. The RNA required in this process was reported to bear a close structural resemblance to tRNAGlu(UUC), and it can be isolated by affinity chromatography directed against the UUC anticodon. Affinity-purified tRNAGlu(UUC) from the cyanobacterium Synechocystis sp. PCC 6803 was resolved into two major subfractions by reverse-phase HPLC. Only one of these was effectively charged with glutamate in enzyme extract from Synechocystis, but both were charged in Chlorella vulgaris enzyme extract. When charged with glutamate, the two glutamyl-tRNAGlu(UUC) species produced were equally effective in supporting both ALA formation and protein synthesis in vitro, as measured by label transfer from [3H]glutamyl-tRNA to ALA and protein. These results indicate that one of the two tRNAGlu(UUC) species is used by Synechocystis for both protein biosynthesis and ALA formation. Both of the tRNAGlu(UUC) subfractions from Synechocystis supported ALA formation in Chlorella enzyme extract. Escherichia coli tRNAGlu(UUC) was charged with glutamate, but did not support ALA formation in Synechocystis enzyme extract. Unfractionated tRNA from Chlorella, pea, and E. coli, having been charged with [3H] glutamate by Chlorella enzyme extract and then re-isolated, were all able to transfer label to proteins in the Synechocystis enzyme extract.
Keywords