The unfolded protein response signals through high-order assembly of Ire1
Top Cited Papers
Open Access
- 14 December 2008
- journal article
- research article
- Published by Springer Nature in Nature
- Vol. 457 (7230) , 687-693
- https://doi.org/10.1038/nature07661
Abstract
Aberrant folding of proteins in the endoplasmic reticulum activates the bifunctional transmembrane kinase/endoribonuclease Ire1. Ire1 excises an intron from HAC1 messenger RNA in yeasts and Xbp1 messenger RNA in metozoans encoding homologous transcription factors. This non-conventional mRNA splicing event initiates the unfolded protein response, a transcriptional program that relieves the endoplasmic reticulum stress. Here we show that oligomerization is central to Ire1 function and is an intrinsic attribute of its cytosolic domains. We obtained the 3.2-Å crystal structure of the oligomer of the Ire1 cytosolic domains in complex with a kinase inhibitor that acts as a potent activator of the Ire1 RNase. The structure reveals a rod-shaped assembly that has no known precedence among kinases. This assembly positions the kinase domain for trans-autophosphorylation, orders the RNase domain, and creates an interaction surface for binding of the mRNA substrate. Activation of Ire1 through oligomerization expands the mechanistic repertoire of kinase-based signalling receptors.Keywords
This publication has 38 references indexed in Scilit:
- Messenger RNA targeting to endoplasmic reticulum stress signalling sitesNature, 2008
- Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic miceProceedings of the National Academy of Sciences, 2008
- Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sitesThe EMBO Journal, 2008
- Structure of the Dual Enzyme Ire1 Reveals the Basis for Catalysis and Regulation in Nonconventional RNA SplicingCell, 2008
- Epidermal growth factor receptor juxtamembrane region regulates allosteric tyrosine kinase activationProceedings of the National Academy of Sciences, 2007
- Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteinsThe Journal of cell biology, 2007
- The Unfolded Protein Response Transducer Ire1p Contains a Nuclear Localization Sequence Recognized by Multiple β ImportinsMolecular Biology of the Cell, 2006
- An Allosteric Mechanism for Activation of the Kinase Domain of Epidermal Growth Factor ReceptorPublished by Elsevier ,2006
- XBP1 mRNA Is Induced by ATF6 and Spliced by IRE1 in Response to ER Stress to Produce a Highly Active Transcription FactorCell, 2001
- A Novel Mechanism for Regulating Activity of a Transcription Factor That Controls the Unfolded Protein ResponseCell, 1996