Modulation of rat brain calpastatin efficiency by post‐translational modifications

Abstract
Calpains, the thiol proteinases of the calcium‐dependent proteolytic system, are regulated by a natural inhibitor, calpastatin, which is present in brain tissue in two forms. Although both calpastatins are highly active on human erythrocyte calpain, only one form shows a high inhibitory efficiency with both rat brain calpain isozymes. The second calpastatin form is almost completely inactive against homologous proteinases and can be converted into an active one by exposure to a phosphoprotein phosphatase, also isolated from rat brain. Phosphorylation of the active calpastatin by protein kinase C and protein kinase A promotes a decrease in its inhibitory efficiency. The interconversion between the two inhibitor forms seems involved in the adjustment of the level of intracellular calpastatin activity on specific cell requirements.