On the “degrees of freedom” of the lasso

Top Cited Papers
Open Access
Abstract
We study the effective degrees of freedom of the lasso in the framework of Stein’s unbiased risk estimation (SURE). We show that the number of nonzero coefficients is an unbiased estimate for the degrees of freedom of the lasso—a conclusion that requires no special assumption on the predictors. In addition, the unbiased estimator is shown to be asymptotically consistent. With these results on hand, various model selection criteria—Cp, AIC and BIC—are available, which, along with the LARS algorithm, provide a principled and efficient approach to obtaining the optimal lasso fit with the computational effort of a single ordinary least-squares fit.
All Related Versions

This publication has 19 references indexed in Scilit: