Abstract
We have fabricated a nematic liquid crystal cell associated with a homogeneously aligned to twisted transition of a liquid crystal director. In the absence of an electric field, the liquid crystal molecule is homogeneously aligned under the crossed polarizers, and thus the cell appears to be black. When a fringe field induced by interdigital electrodes is applied, liquid crystal molecules rotate in plane even above electrodes and thus the cell transmits light. The device exhibits a high transmittance ratio as well as a wide viewing angle, which solves a long standing problem of low transmittance existing in the conventional in-plane switching mode. We show that the distance between electrodes smaller than the width of an electrode and cell gap is required for generating fringe field with applied voltage and rotating molecules above electrodes. We also investigate the mechanism of fringe-field switching and dependence of electro-optic effect on different cell conditions and dielectric anisotropy of liquid crystal.