Microwave imaging via space-time beamforming for early detection of breast cancer

Abstract
A method of microwave imaging via space-time (MIST) beamforming is proposed for detecting early-stage breast cancer. An array of antennas is located near the surface of the breast and an ultrawideband (UWB) signal is transmitted sequentially from each antenna. The received backscattered signals are passed through a space-time beamformer that is designed to image backscattered signal energy as a function of location. The beamformer spatially focuses the backscattered signals to discriminate against clutter and noise while compensating for frequency-dependent propagation effects. As a consequence of the significant dielectric-properties contrast between normal and malignant tissue, localized regions of large backscatter energy levels in the image correspond to malignant tumors. A data-adaptive algorithm for removing artifacts in the received signals due to backscatter from the skin-breast interface is also presented. The effectiveness of these algorithms is demonstrated using a variety of numerical breast phantoms based on anatomically realistic MRI-derived FDTD models of the breast. Very small (2 mm) malignant tumors embedded within the complex fibroglandular structure of the breast are easily detected above the background clutter. The MIST approach is shown to offer significant improvement in performance over previous UWB microwave breast cancer detection techniques based on simpler focusing schemes.

This publication has 15 references indexed in Scilit: