Chromosome and nucleotide sequence differentiation in genomes of polyploid Triticum species
- 1 December 1982
- journal article
- research article
- Published by Springer Nature in Theoretical and Applied Genetics
- Vol. 63 (4) , 349-360
- https://doi.org/10.1007/bf00303906
Abstract
The nature of genome change during polyploid evolution was studied by analysing selected species within the tribe Triticeae. The levels of genome changes examined included structural alterations (translocations, inversions), heterochromatinization, and nucleotide sequence change in the rDNA regions. These analyses provided data for evaluating models of genome evolution in polyploids in the genus Triticum, postulated on the basis of chromosome pairing at metaphase I in interspecies hybrids. The significance of structural chromosome alterations with respect to reduced MI chromosome pairing in interspecific hybrids was assayed by determining the incidence of heterozygosity for translocations and paracentric inversions in the A and B genomes of T. timopheevii ssp. araraticum (referred to as T. araraticum) represented by two lines, 1760 and 2541, and T. aestivum cv. Chinese Spring. Line 1760 differed from Chinese Spring by translocations in chromosomes 1A, 3A, 4A, 6A, 7A, 3B, 4B, 7B and possibly 2B. Line 2541 differed from Chinese Spring by translocations in chromosomes 3A, 6A, 6B and possibly 2B. Line 1760 also differed from Chinese Spring by paracentric inversions in arms 1AL and 4AL whereas line 2541 differed by inversions in 1BL and 4AL (not all chromosomes arms were assayed). The incidence of structural changes in the A and B genomes did not coincide with the more extensive differentiation of the B genomes relative to the A genomes as reflected by chromosome pairing studies. To assay changing degrees of heterochromatinization among species of the genus Triticum, all the diploid and polyploid species were C-banded. No general agreement was observed between the amount of heterochromatin and the ability of the respective chromosomes to pair with chromosomes of the ancestral species. Marked changes in the amount of heterochromatin were found to have occurred during the evolution of some of the polyploids. The analysis of the rDNA region provided evidence for rapid “fixation” of new repeated sequences at two levels, namely, among the 130 bp repeated sequences of the spacer and at the level of the repeated arrays of the 9 kb rDNA units. These occurred both within a given rDNA region and between rDNA regions on nonhomologous chromosomes. The levels of change in the rDNA regions provided good precedent for expecting extensive nucleotide sequence changes associated with differentiation of Triticum genomes and these processes are argued to be the principal cause of genome differentiation as revealed by chromosome pairing studies.Keywords
This publication has 16 references indexed in Scilit:
- The wheat ribosomal DNA spacer region: Its structure and variation in populations and among speciesTheoretical and Applied Genetics, 1982
- Rate of turnover of structural variants in the rDNA gene family of Drosophila melanogasterNature, 1982
- Diploidization and chromosomal pairing affinities in the tetraploid wheats and their putative amphiploid progenitorTheoretical and Applied Genetics, 1982
- Cloning and characterization of ribosomal RNA genes from wheat and barleyNucleic Acids Research, 1979
- N-banded karyotypes of wheat speciesChromosoma, 1977
- Giemsa C-Banding and the Evolution of WheatProceedings of the National Academy of Sciences, 1974
- IDENTIFICATION OF UNPAIRED CHROMOSOMES IN F1 HYBRIDS INVOLVING TRITICUM AESTIVUM AND T. TIMOPHEEV IICanadian Journal of Genetics and Cytology, 1966
- Chromosome behaviour in species hybrids with Triticum timopheeviHeredity, 1953
- H. Kihara: Genome-Analysis in Triticum and Aegilops. XCYTOLOGIA, 1951
- Verwandtschaft derAegilops-Arten im Lichte der Genomanalyse. Ein ÜberblickDer Züchter, 1940