Abstract
The nonlinear power limit of optical links using optical orthogonal frequency division multiplexing for dispersion compensation can be significantly improved using a simple and computationally efficient nonlinearity precompensation technique that requires no additional optical components. Simulations show that a 2-dB increase in transmission power is possible for 6 ps/nm/km fibers in a 4000-km system, and this increases to >4 dB for 2 ps/nm/km fibers. Alternatively, the bit error ratio can be substantially reduced with precompensation when the systems are operated at an optimum power. Only a single tuning parameter is used to represent the whole link, and the system is robust against variations in this parameter.