Short-term peaks in glucose promote renal fibrogenesis independently of total glucose exposure

Abstract
Postprandial hyperglycemia is implicated as a risk factor predisposing to vascular complications. This study was designed to assess recurrent short-term increases in glucose on markers of renal fibrogenesis. Human renal cortical fibroblasts were exposed to fluctuating short-term (2 h) increases to 15 mM d-glucose, three times a day over 72 h, on a background of 5 mM d-glucose. To determine whether observed changes were due to fluctuating osmolality, identical experiments were undertaken with cells exposed to l-glucose. Parallel experiments were performed in cells exposed to 5 mM d-glucose and constant exposure to either 15 or 7.5 mM d-glucose. Fluctuating d-glucose increased extracellular matrix, as measured by proline incorporation ( P < 0.05), collagen IV ( P < 0.005), and fibronectin production ( P < 0.001), in association with increased tissue inhibitor of matrix metalloproteinase (MMP) ( P < 0.05). Sustained exposure to 15 mM d-glucose increased fibronectin ( P < 0.001), in association with increased MMP-2 ( P = 0.01) and MMP-9 activity ( P < 0.05), suggestive of a protective effect on collagen matrix accumulation. Transforming growth factor-β1 (TGF-β1) mRNA was increased after short-term (90 min) exposure to 15 mM glucose ( P < 0.05) and after 24-h exposure to 7.5 mM ? ( P < 0.05). Normalization of TGF-β1 secretion occurred within 48 h of constant exposure to an elevated glucose. Fluctuating l-glucose also induced TGF-β1 mRNA and a profibrotic profile, however, to a lesser extent than observed with exposure to fluctuating d-glucose. The results suggest that exposure to fluctuating glucose concentrations increases renal interstitial fibrosis compared with stable elevations in d-glucose. The effects are, in part, due to the inherent osmotic changes.

This publication has 32 references indexed in Scilit: