The formation and characterization of the in vitro polymeric aggregates of bacteriochlorophyllc homologs fromChlorobium limicola in aqueous suspension in the presence of monogalactosyl diglyceride
- 1 July 1994
- journal article
- Published by Springer Nature in Photosynthesis Research
- Vol. 41 (1) , 235-243
- https://doi.org/10.1007/bf02184164
Abstract
Artificial aggregates of bacteriochlorophyllc (BChlc) were formed in an aqueous medium in the presence of a lipid, monogalactosyl diglyceride (MGDG), and the optical properties of those aggregates were studied by absorption and circular dichroism (CD) mainly. Four BChlc homologs, ([E,E]BChlc F, [P,E]BChlc F, [E,M]BChlc F and [I,E]BChlc F), were isolated from the green photosynthetic bacteriumChlorobium limicola strain 6230. Above 0.0004%, MGDG induced a red-shift of the absorption maxima of BChlc aggregates. At 0.003% MGDG BChlc aggregates showed absorption maxima in the range of 724 to 745 (±3) nm with a shift of 12 to 24 (±3) nm depending on the homolog species. Four kinds of BChlc-MGDG aggregates showed characteristic CD spectra. [E,M]BChlc F gave rise to a CD spectrum similar to that of chlorosomes, while the other three gave spectra of opposite sign. These aggregates are sensitive to 1-hexanol treatment; in a saturating amount (0.85%) of 1-hexanol, all the homologs gave a monomer-like absorption spectrum peaking at 670nm. At an intermediate concentration (0.5%), [E,M]BChlc F showed an enhanced CD intensity, as observed in native chlorosomes. Resonance Raman spectra of the monomer-like BChlc samples indicated that the keto vibrational band at ca. 1640 cm−1 was considerably weakened by the 0.85% 1-hexanol treatment, however the 1680 cm−1 band characteristic of a free keto group did not appear. These results indicate that the artificial aggregates formed by purified BChlc homologs and MGDG are good models for studying chlorosomes structure.Keywords
This publication has 28 references indexed in Scilit:
- Optical spectroscopy of a highly fluorescent aggregate of bacteriochlorophyll cThe Journal of Physical Chemistry, 1993
- SPECTRAL FORMS AND ORIENTATION OF BACTERIOCHLOROPHYLLS c AND α IN CHLOROSOMES OF THE GREEN PHOTOSYNTHETIC BACTERIUM Chloroflexus aurantiacusPhotochemistry and Photobiology, 1993
- Pigment organization and energy transfer in green bacteria. 2. Circular and linear dichroism spectra of protein-containing and protein-free chlorosomes isolated from Chloroflexus aurantiacus strain Ok-70-flBiochimica et Biophysica Acta (BBA) - Bioenergetics, 1991
- FT-IR Studies on the Aggregation of Bacteriochlorophyll c from Chlorobium limicolaChemistry Letters, 1991
- Reversible conversion of aggregated bacteriochlorophyll c to the monomeric form by 1-hexanol in chlorosomes from Chlorobium and ChloroflexusBiochimica et Biophysica Acta (BBA) - Bioenergetics, 1990
- Resonance Raman and infrared studies on axial coordination to chlorophylls a and b in vitroThe Journal of Physical Chemistry, 1986
- Topography of the photosynthetic apparatus of Chloroflexus aurantiacusBiochemistry, 1984
- Chlorophyll organization in green photosynthetic bacteriaBiochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics, 1980
- Strukturaufklärung von neuartigen Bacteriochlorophyllen aus Chloroflexus aurantiacusEuropean Journal of Organic Chemistry, 1979
- Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigmentsJournal of the American Chemical Society, 1970