A Multiresolution Strategy for Reduction of Elliptic PDEs and Eigenvalue Problems
- 1 April 1998
- journal article
- Published by Elsevier in Applied and Computational Harmonic Analysis
- Vol. 5 (2) , 129-155
- https://doi.org/10.1006/acha.1997.0226
Abstract
No abstract availableKeywords
This publication has 14 references indexed in Scilit:
- LU Factorization of Non-standard Forms and Direct Multiresolution SolversApplied and Computational Harmonic Analysis, 1998
- A Comparison of Multiresolution and Classical One-Dimensional Homogenization SchemesApplied and Computational Harmonic Analysis, 1998
- A Multiresolution Strategy for Numerical HomogenizationApplied and Computational Harmonic Analysis, 1995
- The Diameter of the First Nodal Line of a Convex DomainAnnals of Mathematics, 1995
- A Class of Bases in $L^2$ for the Sparse Representation of Integral OperatorsSIAM Journal on Mathematical Analysis, 1993
- Fast wavelet transforms and numerical algorithms ICommunications on Pure and Applied Mathematics, 1991
- Propriétés des matrices « bien localisées » près de leur diagonale et quelques applicationsAnnales de l'Institut Henri Poincaré C, Analyse non linéaire, 1990
- One-dimensional wave propagation in a highly discontinuous mediumWave Motion, 1988
- Homogenization of elliptic eigenvalue problems: Part 2Applied Mathematics & Optimization, 1979
- Homogenization of elliptic eigenvalue problems: Part 1Applied Mathematics & Optimization, 1979