A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems
- 1 December 1993
- journal article
- Published by Springer Nature in Numerische Mathematik
- Vol. 65 (1) , 1-21
- https://doi.org/10.1007/bf01385737
Abstract
No abstract availableKeywords
This publication has 18 references indexed in Scilit:
- High-order adaptive methods for parabolic systemsPhysica D: Nonlinear Phenomena, 1992
- A Local Refinement Finite-Element Method for Two-Dimensional Parabolic SystemsSIAM Journal on Scientific and Statistical Computing, 1988
- Second-order finite element approximations and a posteriori error estimation for two-dimensional parabolic systemsNumerische Mathematik, 1988
- Asymptotically exact a posteriori error estimator for biquadratic elementsFinite Elements in Analysis and Design, 1987
- A Moving Finite Element Method with Error Estimation and Refinement for One-Dimensional Time Dependent Partial Differential EquationsSIAM Journal on Numerical Analysis, 1986
- A moving-mesh finite element method with local refinement for parabolic partial differential equationsComputer Methods in Applied Mechanics and Engineering, 1986
- Some a posteriori error estimators for elliptic partial differential equationsMathematics of Computation, 1985
- Error estimates for the combinedh andp versions of the finite element methodNumerische Mathematik, 1981
- Error Estimates for Adaptive Finite Element ComputationsSIAM Journal on Numerical Analysis, 1978
- Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical TablesPhysics Today, 1966