The concentration-compactness principle in the Calculus of Variations. The Locally compact case, part 2
- 1 August 1984
- journal article
- Published by European Mathematical Society - EMS - Publishing House GmbH in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Vol. 1 (4) , 223-283
- https://doi.org/10.1016/s0294-1449(16)30422-x
Abstract
In this paper (sequel of Part 1) we investigate further applications of the concentration-compactness principle to the solution of various minimization problems in unbounded domains. In particular we present here the solution of minimization problems associated with nonlinear field equations. Résumé: Dans cette deuxième partie, nous examinons de nouvelles applications du principe de concentration-compacité à la résolution dedivers problèmes de minimization dans des ouverts non bornés. En particulier nous résolvons des problèmes de minimisation associés aux équations de champ non linéaires.This publication has 18 references indexed in Scilit:
- Nonlinear elliptic problems in strip-like domains: symmetry of positive vortex ringsNonlinear Analysis, 1983
- Orbital stability of standing waves for some nonlinear Schr dinger equationsCommunications in Mathematical Physics, 1982
- Symétrie et compacité dans les espaces de SobolevJournal of Functional Analysis, 1982
- Multiple solutions of differential equations without the Palais-Smale conditionMathematische Annalen, 1982
- The existence of a non-minimal solution to the SU (2) Yang-Mills-Higgs equations on ?3. Part ICommunications in Mathematical Physics, 1982
- Some remarks on Hartree equationNonlinear Analysis, 1981
- Existence d'une infinité d'ondes solitaires pour des équations de champs non linéaires dans le planAnnales de la Faculté des sciences de Toulouse : Mathématiques, 1980
- Existence of solitary waves in higher dimensionsCommunications in Mathematical Physics, 1977
- On the existence and structure of stationary states for a nonlinear Klein-Gordan equationJournal of Functional Analysis, 1972
- Boundary value problems for a class of nonlinear differential equationsPacific Journal of Mathematics, 1967