Star Cluster Formation and Disruption Time-Scales - II. Evolution of the Star Cluster System in M82's Fossil Starburst
Preprint
- 19 November 2002
Abstract
ABRIDGED: We obtain new age and mass estimates for the star clusters in M82's fossil starburst region B, based on improved fitting methods. Our new age estimates confirm the peak in the age histogram attributed to the last tidal encounter with M81; we find a peak formation epoch at slightly older ages than previously published, log(t_peak / yr) = 9.04, with a Gaussian sigma of Delta log(t_width) = 0.273. Cluster disruption has removed a large fraction of the older clusters. Adopting the expression for the cluster disruption time-scale of t_dis(M)= t_dis^4 (M/10^4 Msun)^gamma with gamma = 0.62 (Paper I), we find that the ratios between the real cluster formation rates in the pre-burst phase (log(t/yr) <= 9.4), the burst-phase (8.4 < log(t/yr) < 9.4) and the post-burst phase (log(t/yr) <= 8.4) are about 1:2:1/40. The mass distribution of the clusters formed during the burst shows a turnover at log(M_cl/Msun) ~ 5.3 which is not caused by selection effects. This distribution can be explained by cluster formation with an initial power-law mass function of slope alpha=2 up to a maximum cluster mass of M_max = 3 x 10^6 Msun, and cluster disruption with a normalisation time-scale t_dis^4 / t_burst = (3.0 +/- 0.3) x 10^{-2}. For a burst age of 1 x 10^9 yr, we find that the disruption time-scale of a cluster of 10^4 Msun is t_dis^4 ~ 3 x 10^7 years, with an uncertainty of approximately a factor of two. This is the shortest disruption time-scale known in any galaxy.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: