Electropore diameters, lifetimes, numbers, and locations in individual erythrocyte ghosts

Abstract
Low light level video microscopy was used to study the diameter, lifetime, number, and location characteristics of electric field-induced pores (electropores) in erythrocyte ghosts. The diameter of electropores was probed by following the efflux of soluble fluorescent-tagged molecules out of the resealed ghost cytoplasmic compartments. After reaching a peak radius of at least 8.4 nm the electropores resealed within 200 ms to a radius of about 0.5 nm and stayed at that radius thereafter. Video sequences clearly show that pores are induced preferentially in the cathodal hemisphere. Pores induced in the hemisphere facing the positive electrode were either (i) never greater than 0.5 nm in radius, (ii) much smaller in number if they were greater than 0.5 nm in radius, or (iii) shorter lived. Calculations indicated that an upper limit of 700 electropores were induced per membrane.