Abstract
In order to protect metallic structures from marine corrosion, cathodic protection using sacrificial anodes or impressed current is widely used. In aerated seawater steel is considered to be protected when a cathodic potential of — 800 mV/SCE (Saturated Calomel Electrode) is applied. However, in many cases, this potential must be lowered due to the presence and activity of microorganisms such as acid‐producing bacteria or sulphate‐reducing bacteria (SRB). SRB are obligate anaerobes using sulphate as an electron acceptor with resultant production of sulfides. Some SRB are able to use hydrogen as an electron donor causing thereby depolarization of steel surfaces. An experiment was performed in marine sediments to determine the relationship between cathodically produced hydrogen and growth of SRB in marine sediments both at ambiant temperature (Therene, 1988) and at 35°C. Results concerning the latter experiments are reported here. Analytical techniques included microbiological analyses, lipid biomarker studies and electrochemical measurements including AC impedance spectroscopy. Results indicated a change in the bacterial community structure both on the steel and sediment as a function of time and potential. The results also showed that cathodically‐produced hydrogen promoted the growth of SRB with the Desulfovibrio genus predominating.