Experimental demonstration and theoretical analysis of slow light in a semiconductor waveguide at GHz frequencies

Abstract
Experimental demonstration and theoretical analysis of slow light in a semiconductor waveguide at GHz frequencies slow-down of light by a factor of two in a semiconductor waveguide at room temperature with a bandwidth of 16.7 GHz using the effect of coherent pulsations of the carrier density. The achievable delay is shown to be limited by the short lifetime. The maximum time delay observed reflects an approximately two-fold increase of the group refractive index, corresponding to a time delay of approximately 20 % of the carrier (population) lifetime. The experimental observations are well-explained by a model accounting for the absorption saturation in the waveguide, when using a lifetime that depends on the reverse bias.