Estimation of the Distribution of a Genetically Determined Enzyme Polymorphism by a Stochastical Outside Criterion
- 1 January 1978
- journal article
- research article
- Published by Wiley in Biometrical Journal
- Vol. 20 (4) , 371-378
- https://doi.org/10.1002/bimj.4710200407
Abstract
The remaining cholinesterase activity after incubation with paraoxon (as an indicator of the activity of human serumparaoxonase) shows a distribution with three clusters which could be explained, after an investigation of families, by a simple two‐allele‐model. A Stochastical outside criterion is given by the constellations of the values within the families.By modification of an iteration method described by FANGMEYER (1964) it is possible to estimate the distributions and frequencies of the three groups. A simulation study shows that the combination of the used method with the pure cluster analysis is advantageous.Keywords
This publication has 11 references indexed in Scilit:
- Genetic polymorphism and interethnic variability of plasma paroxonase activity.Journal of Medical Genetics, 1976
- Genetisch determinierter Polymorphismus der menschlichen Serum-Paraoxonase (EC 3.1.1.2)Humangenetik, 1973
- Genetisch determinierter polymorphismus der menschlichen serum-paraoxonase (EC 3.1.1.2)Human Genetics, 1973
- Korrelation zwischen der unterschiedlichen Vergiftbarkeit der Serum-Cholinesterase durch E 600 und der Aktivität des E 600-spaltenden Enzym-Systems in menschlichen SerenHoppe-Seyler´s Zeitschrift Für Physiologische Chemie, 1972
- Estimating the components of a mixture of normal distributionsBiometrika, 1969
- Estimation of Finite Mixtures of Distributions from the Exponential FamilyJournal of the American Statistical Association, 1969
- Unterschiedliche Reaktion menschlicher Serum-Cholinesterasen mit E 600 (0,0-Diäthyl-0-(p-nitrophenyl)-phosphat)Archives of Toxicology, 1969
- Estimation of Parameters for a Mixture of Normal DistributionsTechnometrics, 1966
- VortragsauszügeBiometrische Zeitschrift, 1964
- On the solution of likelihood equations by iteration processes. The multiparametric caseBiometrika, 1962