Abstract
Ascorbic acid (vitamin C) is synthesized in rodent liver, circulates in the blood, and is concentrated in the brain. Experiments were performed to characterize the mechanism of ascorbate uptake by rat cerebral astrocytes in primary culture. Astrogial uptake of L-[14C]ascorbate was observed to be both saturable and stereoselective. In addition, uptake was dependent on both the incubation temperature and the concentration of Na+ because it was largely inhibited by cooling to 4.degree. C, by treatment with ouabain to increase intracellular Na+, and by the substitution of K+, Li+, or N-methyl-D-glucamine for extracellular Na+. The affinity for ascorbate was relatively high in cells incubated with a physiological concentration of extracellular Na+, because the apparent Km was 32 .mu.M in 138 mM Na+. However, the affinity for ascorbate was significantly decreased when the extracellular Na+ concentration was lowered. Treatment of astrocytes with dibutyryl cyclic AMP induced stellation and increased the maximum rate of ascorbate uptake by 53%. We conclude that astrocytes possess a stereoselective, high-affinity, and Na+- dependent uptake system for ascorbate. This system may regulate the cerebral ascorbate concentration and consequently modulate neuronal function.