An Essential Role of Domain D in the Hormone-Binding Activity of Human β1 Thyroid Hormone Nuclear Receptor

Abstract
By analogy with steroid receptors, human placental thyroid hormone nuclear receptor (hTR beta 1) could be divided into four functional domains: A/B (Met1-Leu101), C (Cys102-Ala170), D (Thr171-Lys237), and E (Arg238-Asp456). The E domain was thought to bind thyroid hormone. To evaluate whether domain E alone is sufficient to bind T3 or requires the presence of other domains for functional T3-binding activity, a series of deletion mutants was constructed. The mutants were expressed in Escherichia coli, and the expressed proteins were purified. Analysis of the T3-binding affinity and analog specificity of the purified truncated hTR beta 1 indicated that domain E alone did not have T3-binding activity. Extension of the amino-terminal sequence of domain E to include part of domain D yielded a mutant (Lys201-Asp456) with a Ka for T3 of 0.5 +/- 0.2 x 10(9) M-1. Further extension to include the entire domain D (Met169-Asp456) yielded a mutant with T3-binding activity with a Ka of 0.8 +/- 0.1 x 10(9) M-1. Further extension of the amino-terminal sequence to include domain C increased the affinity for T3 by nearly 2-fold (Ka = 1.5 +/- 0.4 x 10(9) M-1). The Ka for the wild-type hTR beta 1 is 1.5 +/- 0.2 x 10(9) M-1. Furthermore, mutant (Met169-Asp456) binds to 3',5',3-triiodo-L-thyropropionic acid, D-T3, L-T4, and L-T3 with 307%, 37%, 7%, and 0.1%, respectively, of the activity of L-T3. This order of analog affinity is similar to that of the wild-type hTR beta 1.(ABSTRACT TRUNCATED AT 250 WORDS)