Spatial hole burning effects in distributed feedback lasers

Abstract
The effects of spatial hole burning in a steady-state distributed feedback (DFB) laser are examined by numerically solving the coupled mode equations that describe the system. An approximate solution for the gain above threshold is derived and compared to the exact solution. It is shown that the self-induced grating that arises due to spatial hole burning significantly reduces the mode discrimination of index-coupled DFB lasers. This makes it difficult for these lasers to maintain single-longitudinal-mode behavior above threshold. However, it is found in addition that bulk-modulated (gain-coupled) DFB lasers do not lose their mode selectivity above threshold, indicating that these lasers may be better choices for narrow-linewidth operation.