Aorta of ApoE-Deficient Mice Responds to Atherogenic Stimuli by a Prelesional Increase and Subsequent Decrease in the Expression of Antioxidant Enzymes
- 8 August 2003
- journal article
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 93 (3) , 262-269
- https://doi.org/10.1161/01.res.0000082978.92494.b1
Abstract
Oxidative stress has been implicated in the development of atherosclerotic lesions. We evaluated the relationship between extent of atherosclerotic lesion formation and vascular expression of pro- and antioxidant enzymes in apoE-deficient mice. On normal chow, these mice showed elevated serum cholesterol levels (7.5- to 9.5-fold), and age-dependent, spontaneous development of all stages of atherosclerotic lesions, starting at the age of 12 weeks. RNA was extracted from the aortic arch and descending aorta, and mRNA expression of pro- and antioxidant enzymes was measured with real-time PCR. Local infiltration of monocytes/macrophages, reflected by increased vascular expression of CD68 mRNA (>10-fold), indicated that the arch was more susceptible than the descending aorta. The expression of catalase-1 and various isoforms of superoxide dismutase, glutathione peroxidase, and glutathione S-transferase alpha was significantly increased in the aortic arch, but not in the descending aorta, in the period preceding lesion formation (age 6 to 12 weeks). These expression levels were 1.5 to 5 times higher than in age-matched wild-type animals. Remarkably, there was an inverse relationship between extent of lesion formation and the mRNA levels of antioxidant enzymes, most of which started to decline after 12 weeks, as lesions developed. In contrast, inducible nitric oxide synthase expression increased 4-fold in the aortic arch over the course of the disease. Our results suggest that the arterial wall responds to increased serum levels of atherogenic lipoproteins by stimulating expression of antioxidant enzymes. The observed co-ordinate decline in expression of many of these protective systems may greatly accelerate the development of atherosclerosis.Keywords
This publication has 31 references indexed in Scilit:
- Disparity of MCP-1 mRNA and Protein Expressions Between the Carotid Artery and the Aorta in WHHL RabbitsArteriosclerosis, Thrombosis, and Vascular Biology, 2003
- Oxidation-Sensitive Transcription Factors and Molecular Mechanisms in the Arterial WallAntioxidants and Redox Signaling, 2001
- Induction of catalase, alpha, and microsomal glutathione S-transferase in CYP2E1 overexpressing HepG2 cells and protection against short-term oxidative stressHepatology, 2001
- Shear Stress Enhances Glutathione Peroxidase Expression in Endothelial CellsBiochemical and Biophysical Research Communications, 2000
- Enhanced atherosclerosis and kidney dysfunction in eNOS–/–Apoe–/– mice are ameliorated by enalapril treatmentJournal of Clinical Investigation, 2000
- Induction of Phase I and Phase II Drug-Metabolizing Enzyme mRNA, Protein, and Activity by BHA, Ethoxyquin, and OltiprazToxicology and Applied Pharmacology, 1995
- Heme oxygenase and oxidative stress. Evidence of involvement of bilirubin as physiological protector against oxidative damageBiochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1994
- Hypercholesterolemia increases endothelial superoxide anion production.Journal of Clinical Investigation, 1993
- Spontaneous Hypercholesterolemia and Arterial Lesions in Mice Lacking Apolipoprotein EScience, 1992
- Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cellsPublished by Elsevier ,1992