Bargmann structures and Newton-Cartan theory
- 15 April 1985
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review D
- Vol. 31 (8) , 1841-1853
- https://doi.org/10.1103/physrevd.31.1841
Abstract
It is shown that Newton-Cartan theory of gravitation can best be formulated on a five-dimensional extended space-time carrying a Lorentz metric together with a null parallel vector field. The corresponding geometry associated with the Bargmann group (nontrivially extended Galilei group) viewed as a subgroup of the affine de Sitter group AO(4,1) is thoroughly investigated. This new global formalism allows one to recast classical particle dynamics and the Schrödinger equation into a purely covariant form. The Newton-Cartan field equations are readily derived from Einstein’s Lagrangian on the space-time extension.This publication has 26 references indexed in Scilit:
- Minimal gravitational coupling in the Newtonian theory and the covariant Schr dinger equationGeneral Relativity and Gravitation, 1984
- Lagrangian mechanics and the geometry of configuration spacetimeAnnals of Physics, 1983
- Dynamics of continua and particles from general covariance of newtonian gravitation theoryReports on Mathematical Physics, 1978
- A classification of space-time structuresReports on Mathematical Physics, 1976
- Covariant Newtonian limit of Lorentz space-timesGeneral Relativity and Gravitation, 1976
- On the uniqueness of the Newtonian theory as a geometric theory of gravitationCommunications in Mathematical Physics, 1975
- Four-Dimensional Formulations of Newtonian Mechanics and Their Relation to the Special and the General Theory of RelativityReviews of Modern Physics, 1964
- On Unitary Ray Representations of Continuous GroupsAnnals of Mathematics, 1954
- Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie) (Suite)Annales Scientifiques de lʼÉcole Normale Supérieure, 1924
- Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie)Annales Scientifiques de lʼÉcole Normale Supérieure, 1923