A note on algebraic independence of logarithmic and exponential constants
- 1 May 1978
- journal article
- Published by Association for Computing Machinery (ACM) in ACM SIGSAM Bulletin
- Vol. 12 (2) , 18-20
- https://doi.org/10.1145/1088261.1088265
Abstract
This paper gives a corollary to Schanuel's conjecture that indicates when an exponential or logarithmic constant is transcendental over a given field of constants. The given field is presumed to have been built up by starting with the rationals Q with π adjoined and taking algebraic closure, adjoining values of the exponential function or of some fixed branch of the logarithmic function, and then repeating these two operations a finite number of times.Keywords
This publication has 2 references indexed in Scilit:
- The problem of integration in finite termsTransactions of the American Mathematical Society, 1969
- Ueber die Zahl ?.*)Mathematische Annalen, 1882