Abstract
The objective of the present study was to investigate the role of mitochondrial Ca2+ in doxorubicin-induced cell injury. The effect of doxorubicin on cultured cells was investigated by digitized fluorescence imaging. The Ca2+ sensitive fluorescent dye fura-2 was used to estimate cytosolic, mitochondrial and total cellular Ca2+. Rhodamine 123 was used to estimate the mitochondrial membrane potential, and cellular ATP was determined by h.p.l.c. The data showed that doxorubicin induced greater-than-2-fold increases in mitochondrial Ca2+ before changes in cytosolic Ca2+ could be detected. An increase in mitochondrial Ca2+ paralleled the observed dissipation in mitochondrial membrane potential. Cellular ATP levels appeared to decrease as a result of mitochondrial dysfunction, which in turn produced greater-than-2-fold increases in cytosolic Ca2+. The data suggest that doxorubicin-induced alterations in mitochondrial Ca2+ homoeostasis are associated with a dissipation in energy conservation, which may result in cell injury.