Statistical mechanics of voting

Abstract
Decision procedures aggregating the preferences of multiple agents can produce cycles and hence outcomes which have been described heuristically as `chaotic'. We make this description precise by constructing an explicit dynamical system from the agents' preferences and a voting rule. The dynamics form a one dimensional statistical mechanics model; this suggests the use of the topological entropy to quantify the complexity of the system. We formulate natural political/social questions about the expected complexity of a voting rule and degree of cohesion/diversity among agents in terms of random matrix models---ensembles of statistical mechanics models---and compute quantitative answers in some representative cases.

This publication has 0 references indexed in Scilit: