Semiclassical description of nonadiabatic quantum dynamics: Application to the S1–S2 conical intersection in pyrazine

Abstract
A recently proposed semiclassical approach to the description of nonadiabatic quantum dynamics [G. Stock and M. Thoss, Phys. Rev. Lett. 78, 578 (1997), X. Sun and W. H. Miller, J. Chem. Phys. 106, 916 (1997)] is applied to the S1–S2 conical intersection in pyrazine. This semiclassical method is based on a transformation of discrete quantum variables to continuous variables, thereby bypassing the problem of a classical treatment of discrete quantum degrees of freedom such as electronic states. Extending previous work on small systems, we investigate the applicability of the semiclassical method to larger systems with strong vibronic coupling. To this end, we present results for several pyrazine models of increasing dimensionality and complexity. In particular, we discuss the quality and performance of the semiclassical approach when the number of nuclear degrees of freedom is increased. Comparison with quantum-mechanical calculations and experimental results shows that the semiclassical method is able to describe the ultrafast dynamics in this system.