Determination of a molecular torsional angle in the metarhodopsin-I photointermediate of rhodopsin by double-quantum solid-state NMR

Abstract
We present a solid-state NMR study of metarhodopsin-I, the pre-discharge intermediate of the photochemical signal transduction cascade of rhodopsin, which is the 41 kDa integral membrane protein that triggers phototransduction in vertebrate rod cells. The H-C10-C11-H torsional angles of the retinylidene chromophore in bovine rhodopsin and metarhodopsin-I were determined simultaneously in the photo-activated membrane-bound state, using double-quantum heteronuclear local field spectroscopy. The torsional angles were estimated to be |φ| = 160 ± 10° for rhodopsin and φ= 180 ± 25° for metarhodopsin-I. The result is consistent with current models of the photo-induced conformational transitions in the chromophore, in which the 11-Z retinal ground state is twisted, while the later photointermediates have a planar all-E conformation.