Abstract
A new simple quantitative representation of three-dimensional structure of globular proteins is proposed which is useful for comparison of distantly related problems, computer sorting of large sets of conformations, and search of structurally similar domains in protein data base. The folding course of the polypeptide backbone is approximated by a set of successive vectors corresponding to the elements of regular secondary structure (e.g. α-helices, strands of β- sheets) and non-regular segments. The parameters specifying the spatial organization of segments in this vector model are internal coordinates, namely, lengths of the vectors, planar and dihedral angles. Quantitative representation proposed allows to circumvent the problem of insertions/deletions and to avoid the stage of best superposition during protein comparison An application was made to the comparison of three-dimensional structures of scorpion toxins Centruroides sculpturatus Ewing v-3, Buthus eupeus M9 and I5A, which have different chain lengths and low sequence similarity.