MDR and PRP: A Comparison of Methods for High-Order Genotype-Phenotype Associations
- 1 January 2004
- journal article
- research article
- Published by S. Karger AG in Human Heredity
- Vol. 58 (2) , 82-92
- https://doi.org/10.1159/000083029
Abstract
Complex diseases such as cardiovascular disease are likely due to the effects of high-order interactions among multiple genes and demographic factors. Therefore, in order to understand their underlying biological mechanisms, we need to consider simultaneously the effects of genotypes across multiple loci. Statistical methods such as multifactor dimensionality reduction (MDR), the combinatorial partitioning method (CPM), recursive partitioning (RP), and patterning and recursive partitioning (PRP) are designed to uncover complex relationships without relying on a specific model for the interaction, and are therefore well-suited to this data setting. However, the theoretical overlap among these methods and their relative merits have not been well characterized. In this paper we demonstrate mathematically that MDR is a special case of RP in which (1) patterns are used as predictors (PRP), (2) tree growth is restricted to a single split, and (3) misclassification error is used as the measure of impurity. Both approaches are applied to a case-control study assessing the effect of eleven single nucleotide polymorphisms on coronary artery calcification in people at risk for cardiovascular disease.Keywords
This publication has 36 references indexed in Scilit:
- Coronary artery calcium volume scores on electron beam tomography in 12,936 asymptomatic adultsThe American Journal of Cardiology, 2004
- Combining Genotype Groups and Recursive Partitioning: An Application to Human Immunodeficiency Virus Type 1 Genetics DataJournal of the Royal Statistical Society Series C: Applied Statistics, 2004
- 4G/4G Genotype of PAI-1 Gene Is Associated With Reduced Risk of Stroke in ElderlyStroke, 2003
- The MoAb reloaded? Is alemtuzumab the one?Blood, 2003
- A Combinatorial Partitioning Method to Identify Multilocus Genotypic Partitions That Predict Quantitative Trait VariationGenome Research, 2001
- Classification Trees for Multiple Binary ResponsesJournal of the American Statistical Association, 1998
- Survival Trees by Goodness of SplitJournal of the American Statistical Association, 1993
- Tree-Structured Methods for Longitudinal DataJournal of the American Statistical Association, 1992
- Multivariate Adaptive Regression SplinesThe Annals of Statistics, 1991
- Projection Pursuit RegressionJournal of the American Statistical Association, 1981