Nil Subrings of Goldie Rings are Nilpotent
- 1 January 1969
- journal article
- Published by Canadian Mathematical Society in Canadian Journal of Mathematics
- Vol. 21, 904-907
- https://doi.org/10.4153/cjm-1969-098-x
Abstract
Herstein and Small have shown (1) that nil rings which satisfy certain chain conditions are nilpotent. In particular, this is true for nil (left) Goldie rings. The result obtained here is a generalization of their result to the case of any nil subring of a Goldie ring.Definition. Lis a left annihilator in the ring R if there exists a subset S ⊂ R with L = {x∈ R|xS= 0}. In this case we write L= l(S). A right annihilator K = r(S) is defined similarly.Definition. A ring R satisfies the ascending chain condition on left annihilators if any ascending chain of left annihilators terminates at some point. We recall the well-known fact that this condition is inherited by subrings.Definition. R is a Goldie ring if R has no infinite direct sum of left ideals and has the ascending chain condition on left annihilators.Keywords
This publication has 0 references indexed in Scilit: