Magnetization studies of Landau level broadening in two-dimensional electron systems

Abstract
We have used a torque magnetometer to measure de Haas - van Alphen oscillations in the magnetization of two-dimensional electrons in GaAs/AlGaAs heterostructures and multiple-quantum-well systems for temperatures ranging from 0.125 K to 4.2 K and in magnetic fields of up to 15 T. Our results indicate that for high magnetic fields the density of states can be described by a series of Lorentzian-broadened Landau levels with a broadening that is independent of the magnetic field, B, and Landau level index, n. However, at low magnetic fields the Lorentzian-broadened density of states becomes indistinguishable from a Gaussian one with a broadening that is proportional to . The high-field behaviour of the Landau level line-shape is shown to differ appreciably from the low-field case as reported by other workers using both magnetization and other experimental methods. The reliability of this and other experimental techniques is discussed.