Irrationality of motivic zeta functions

Abstract
Let $K_0(\mathrm{Var}_{\mathbb{Q}})[1/\mathbb{L}]$ denote the Grothendieck ring of $\mathbb{Q}$-varieties with the Lefschetz class inverted. We show that there exists a K3 surface X over $\mathbb{Q}$ such that the motivic zeta function $\zeta_X(t) := \sum_n [\mathrm{Sym}^n X]t^n$ regarded as an element in $K_0(\mathrm{Var}_{\mathbb{Q}})[1/\mathbb{L}][[t]]$ is not a rational function in $t$, thus disproving a conjecture of Denef and Loeser.

This publication has 0 references indexed in Scilit: