Comparison of generalized Gaussian and Laplacian modeling in DCT image coding

Abstract
Generalized Gaussian and Laplacian source models are compared in discrete cosine transform (DCT) image coding. A difference in peak signal to noise ratio (PSNR) of at most 0.5 dB is observed for encoding different images. We also compare maximum likelihood estimation of the generalized Gaussian density parameters with a simpler method proposed by Mallat (1989). With block classification based on AC energy, the densities of the DCT coefficients are much closer to the Laplacian or even the Gaussian.<>

This publication has 6 references indexed in Scilit: