Boundary integral method for bioluminescence tomography

Abstract
Bioluminescence tomography (BLT) allows in vivo localization and quantification of bioluminescent sources inside a small animal to reveal various molecular and cellular activities. We develop a reconstruction method to identify such a bioluminescent source distribution using the boundary integral method. Based on the diffusion model of the photon propagation in the biological tissue, this method incorporates a priori knowledge to define the permissible source region, and establish a direct linear relationship between measured body surface data and an unknown bioluminescent source distribution to enhance numerical stability and efficiency. The feasibility of the proposed BLT algorithm is demonstrated in heterogeneous mouse chest phantom studies.